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The gas hydrate decomposition regime in a bed is found, giving rise to two movable phase transition 

boundaries. A mathematical model of  the process is suggested. 

In [1] dissociation of a gas hydrate which fully saturates the pore space of the bed was studied. The dissociation front 

was assumed to separate the hydrate-containing and the water-gas mixture-saturated areas. In [2] it was shown that in a highly 

permeable bed the minimum temperature occurred at the phase transition front. At substantial pressure drops within the bed 

the computed equilibrium dissociation temperature may not lie on the equilibrium curve separating the hydrate and the 

gas-water regions. In this case the gas hydrate decomposition will be accompanied by forming gas and ice. In a bed with a 

positive initial temperature or in a hydrate-containing bed subjected to heating, apart from the hydrate dissociation front there 

will be an ice melting surface moving behind the dissociation surface. 

In this case the Stefan mathematical model is transformed into a model containing two movable phase transition 

boundaries which separate the areas saturated with the hydrate, the ice-gas mixture, and the gas-water mixture. 

In this article we give a calculation example when the assumption of existence of a dissociation surface separating the 

areas saturated with hydrate and gas-water mixture does not comply with the dissociation pressure and temperature estimates. 

A mathematical model of the process that comprises two movable phase transition boundaries is suggested. The problem 
solution is given in a similarity statement. 

1. In [2] a mathematical model was developed for gas hydrate dissociation in hydrate-saturated beds. The modei 

includes mobility of the liquid phase. The decomposition regimes found as a function of the penetrability coefficient can be 

divided into two classes. In the first case of slightly permeable beds the temperature distribution is monotonic. In the second 

case when permeability is sufficiently high (k > 10 -16 m 2) a minimum temperature is found at the gas hydrate dissociation 

surface. It results from an abrupt pressure drop that enhances the decomposition. Typical pressure and temperature 

distributions for the latter case are shown in Fig. 1. The dissociation temperature T. depends primarily on the permeability 

coefficient, initial temperature of the bed, and pressure at a fixed boundary which simulates a well. In slightly or highly 

permeable beds the estimated temperature T. can be lower than the freezing point of water. So, when the computation 

procedure of [2] is used, for the initial temperature T o = 278 K, permeability k = 10 11 m 2, boundary values of the 

temperature T o = 373 K and pressure pO = 1.2 x 10 6 Pa we have T. = 268 K. Here even if the near-well area is heated to 

a high temperature, the dissociation front temperature cannot be prevented from falling, and it drops below the freezing point 

of water. In nonheated beds with temperatures close to the freezing point of water, a similar trend is observed for rather low 
permeabilities of the order of 10 -16 m 2. 

Thus, numerical experiments suggest that for a relatively wide parameter range there are hydrate dissociation regimes 

in a bed with the initial temperature above 273.15 K when the assumption of gas and water production is invalid. In that case 

it is necessaryto assume that hydrate decomposition results in a gas-ice mixture. The heat flux from the surrounding rocks or 

the welt gives rise to an ice melting boundary moving in the dissociation surface direction. Such a process will later be 

described with a mathematical dissociation model including formation of two unknown mobile phase transition boundaries 

developed here. 

2. As in [1, 2] it will be assumed that the hydrate-containing bed is a porous material fully saturated with gas hydrate 

and that the thermodynamic conditions at the fixed boundary correspond to the conditions when gas and water are free. We 

consider the gas hydrate dissociation process within the bed with the parameters, initial and boundary conditions for which 

the assumption of a dissociation surface separating the hydrate and gas-water regions leads to contradictions. It will be as- 
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Fig. 1. Typical pressure and temperature 

distributions at a negative temperature at the 

dissociation front. 
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Fig. 2. Plot of temperature and pressure versus the 

dimensionless similarity variable (To = 277 K, 
T o = 333 K, pO = 1.5 MPa, k = 10 -14 m-) .  

assumed in this case that there are two movable phase transition boundaries that separate three areas in which the gas-water 

mixture occurs in different states. One of the surfaces moving with a large velocity corresponds to the surface where the 

hydrate dissociates into a gas component and solid water phase. At the other boundary melting of ice occurs. 

It will be assumed that the porous skeleton, gas hydrate, and ice are incompressible and immovable, water is an 

incompressible liquid, gas satisfies the Clapeyron equation, and capillary effects are insignificant. Then, the heat conduction 

equation holds in the hydrate region 

OT 
= alAT. (1) 

Ot 

Here 

al = , m~, gh "-~ (1 - -  m )  ~, ra 

tnpghCgh -~- (1 - -  m) PmCm 

In the ice-gas region located between the movable boundaries a set of equations is valid, consisting conservation of 

mass of the gas, the Darcy law, the conservation of energy, and the equation of state of the gas 

o k/g(S~ 0 
m-  ( l - - S ~ 9 g ~ d i v g g v g i = 0 ,  v g = - -  gradP, T ( P e ) ~ - } - d i v ( p g h g v g ! = d i v ( ~ 2 g r a d T ) '  P = p g R T . ( 2 )  

at  ~ ~g 

Here (pe)2= mS'~f l i iq-  m(1 - -  Si) pgeg + (1 - -  m) proem, ~2 = mSi~i,-k- m (1 - -  Sf) 9~g+ (1 - -  m) Xm. 

It is noteworthy that the ice-saturation function S i is a constant which can be determined from considerations of a 

molecular character. Just as in [2], for certainty we consider methane hydrate with the filling degree n = 6 [3]. Then, with 

molecular masses of methane and water known, it will be found that 1 m 2 of the hydrate, weighing 900 kg, contains 783.87 
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kg of H20. In the solid state this water mass occupies approximately 0.86 of the pore space (in a hydrate-saturated bed). 

Consequently, S~ = 0.86. In the gas-water region located between the fixed wall and the ice melting boundary, a set of 
equations similar to (2) but taking the liquid phase into consideration is valid 

m 
0 

Ot 
( 1  - -  Sw) pg-}- div pgvg= 0, 

0 k[g (S~w) k[w (Sw~ 
m S w + d i v v w = 0 ,  v g =  - - g r a d P ,  Vw= - - g r a d P ,  

Ot p~g ~w 

0 

Ot 
- -  (pe)a + div (pgt~g + pwhwVw) = div (s grad T). 

(3) 

Here (pe)a = mSwPwew+ m (1 - -  Sw) 9geg+ (1 -- m) PmCm, )va= mSw)~w~ m (1 : - -  Sw) )~gq- (1 -- m) )~m 

In the abov= set of equations the water saturatiua function Sw is the desired function to be found while solving the 

problem. 

For derivation of the boundary conditions at both movable boundaries use will be made of the universal discontinuity 

relations for energy and gas and H20 mass balances and the conditions for the equilibrium phase transitions. Then, under 

pressure and temperature continuity conditions we have at the gas hydrate dissociation front 

2~_ (grad T)n_ -- )~+ (grad T)~+ --9g-,qg- (vg),~_ = 

= rnV,n { P g h h g h  - pg_hg= (1 -- Si) -- oihiSi},  (4) 

Pg-(Vg')n- = mg,n {pg- (1 - -  S i )  - Pg0}. 

Here Pg0 = 116.13 kg/m 3 is the effective gas density in the hydrate-containing region, calculated as the gas mass contained 

in the hydrate based on the whole pore volume filled with the gas hydrate [2]. 

The formula of the type given in [4] can be used as the dependence of temperature on pressure 

B 
l g P . =  A - - - - - ,  A = 5 , 6 4 ,  B =  1155. 

T,  

The conditions at the ice melting boundary are similar to those at the ice-water phase transition surface in unsaturated 

ground [5] 

mV* (S+9ih i - -  S_pwhw) = )~_ (grad T)~,_ - -  ~,+ (grad T)~+ - -  p~wvw _, 

m y *  (p iS+  - -  ~wS_) = - p w v w . - ,  (5)  

mV* (S_ - -  S+) := vg,~+ - -  vgn-, T* = F (P*). 

The systems of equations (2), (3) and boundary conditions (4), (5) will be transformed to the systems for temperature 

T, pressure P, and saturation S using thermodynamic relations and identical transformations. Then, for the gas-ice region we 

have OP 
(1 i -  Si) --~- -- (1 -- Si)  

P O T  

T O t  

~ f g div(PgradP)  + k f g  P gradTgradP,  
m~tg m~g T 

(pC)2 0_~T _ _ k d i v ( ~ - ~ / g g r a d P )  - 
Ot \ ~g , 

C7 P fg grad P grad 7" = div (~.~ grad T). 
R T lag 

(6) 

Here (9C)~ = mSigiCi + m(i --  Si) t~gC~, + (1 --  m) 9faCto. 
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In the gas-water region we have 

OSw 
1 7 ~  - -  - -  - -  

Ot 

OP __ p 
( 1  - -  Sw) ar- 

k 
-- div (fgP grad P) 4- 

mlag 

(pC)3--0T--kdiv! , (  f g 
Ot , t.tg 

Cv 

R 

k div(/ gradP), 
law 

OSw___( l_Sw)  p OT 
Ot T Ot 

kfg P 
grad P grad T, 

mpg T 

- I - [ w  ) P g r a d P ] - -  
law . . . .  

[g P , 
lug: T ) grad P grad T = div (s grad T). 

Here (oC)a = mSiPiC i 4 m (1 - -  Si~ 9gCp -1- ( 1 - -  m) pgCg. 

Conditions (4) at the dissociation surface reduce to 

m~'.PgnV.,~ = ~+ (grad T),~+ --  )~_ (grad T),~_, 

lag . . . .  
B 

T. 

At the ice melting boundary we obtain from (5) 

(7) 

(8) 

mSiPi, q*V.* = ~+ (grad T).+ - -  Z,_ (grad T),,_, 

V* = k [ 1 [g(S_)(grad P)~_ 1 [g(Si)(grad P)~+ ] , 
rnlag S_ - - S i  S_ - - S i  (9) 

1 Si 9:t I V * -  ~ [w(S_)(gradP),~-, T * = F ( P * ) .  
S_ 9w } mpwS_ 

The last equation of (9) is the dependence of the ice melting temperature on the pressure. Because in highly 
permeable beds the pressure at the rear melting surface coincides in order of magnitude with the pressure at the fixed wall, 
T* = F(P ~ can be assumed. In this estimation the temperature estimation error amounts to hundredths of a degree and can be 

neglected. 
3. We consider gas hydrate dissociation in a bed with the initial temperature T o and the pressure pO and temperature 

T O at the fixed wall. As in [2], the problem will be solved at small pressure drops. Then, the basic equations can be 

linearized. The desired functions in the gas-water area will be expressed as nondisturbed quantities and disturbances 

T = T O + T  ,, p = p o + p ,  S = S O + S  '. 

Then, in a linear approximation the set of equations (7) for the gas-water region will become 

OS' --- ~ A p ' ,  
Ot 

OP' OT' 
- -  + 83 - -  •  

Ot dt 

OT' OP' 
- -  -+- ~a --a3AT'. 

Ot Ot 

(lo) 
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H e r e  

X,a m(1 - -S  O ) kP ~ ( [w q_ [g,'l 
a 3 - -  ~ { ' 0 3  - -  , 7'~ 3 - -  

(oc)~ (~,c)~ m (1 _ s.o) t, ~ w  ~g ,, 

po k~w 
6 3 = - - - -  , ~w . . . . .  �9 

T O rn~tw 

The value obtained under the condition of an immovable water phase S o = S~oi/p w will be taken as the zero 

approximation of S o for the water saturation function. 

A similar set of equations is also produced tbr the gas-ice region while linearizing about the values at the ice melting 

surface but with xw - 0 (the condition of immovable ice). In the region between two immovable boundaries, however, this 

system can be simplified, if it is borne in mind that the temperature varies between the ice melting point and the dissociation 

temperature and the pressure ranges from the dissociation pressure to the value at the fixed wall. Then, with the terms of 

higher order of smallness neglected, we arrive at two independent equations for the pressure and temperature 

OP' 
- -  • 

Ot 

OT 
-- azAT'. 

Ot 

( i l )  

Here 

Z,,. #po /g(Si) 
a , z - -  - -  , :~'2 = 

(oCh m (1 - -  Si) ~g 

We consider the one-dimensional semi-infinite problem. Let T o, T ~ and po be constants. 

formulated will have a similarity solution of the form 

T'  = T' (~), P '  = P '  (t), S' = S'  (~), 

x ,  (t) = ~,  l /T,  x *  (t) = '~* V s  ~ = xl  1/TT 

The solution in all the three regions can be expressed in terms of the probability integrals. 

In the gas-water region (0 < ,~ < /3"), we have 

p (~) - 

~ 2  - -  {Z1 
[(1 - -  ~ )  b~E~ (~) - -  (l - -  as) b2E2 (~)1 + po, 

T (t) = % [b~E~ (~) - -  b2E~ (~)] + T ~ 
CZl - -  ~ 2  

P - - P *  T - - T * )  
S (~) = 8 po T O + S_, 

%,2 + ( l +  aa" I _ =  - -  + [/ /  -~--- 1 - - •  I ' 1 ( t ' 2 _ p _ , )  

b~ - -  1 - -  ~ ( T *  - -  7 o )  + p ,  _ p o ,  E ,  (~) = 
o)  a 

b~=  1- -% ( T * - - T  o ) + P * - - p 0 ,  E~(~)=  
O a  

8 = 
{1--5 ~  o) ~ g  

r,g/~w (so) + Ogfw(SO) 

a8 ~30,)3 ' 
~3 

/ t  //~-~-3 ~ ) 
[ ~* i,t// ~1 ) err I T  -~-3, 

~f  T I//" a. ) 

~rf I/ ~I 
t-  a 3 ,! 

Then, the problem 

(12) 
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In the gas-ice region (/3* < ~ < /3.) the solution has the form 

T(~) = T* + ( T . - - T * )  

err ( 13" 

P (~) = p ,  + (P ,  - -  p , )  

13, 13" ) 
err I 2  1/-----~2 ) -  err ( 2 ,  - I / ~  

13" 

~ 2 3 / ~  ~, 2-1/~~2 

(13) 

In the hydrate region (/3. < ~ < oo) the temperature distribution is defined by the expression 

erfc ( 2 - 1 / ~ - / )  

T = (T. - -  To) erfc'~( 2-1/~13" ) + To. (14) 

Substituting the solutions (12)-(14) into the boundary conditions at the phase transition fronts gives transcendental 
equations for the unknown T., P., /3., P*, S_, and/3". It should be noted that the solution (13) for the region between two 
movable boundaries contains unknown functions at both boundaries. Consequently, the sets of equations (8) and (9) comprise 

one equation set for determination of the seven unknown functions, which should be solved numerically. 
4. The calculations were carried out with the following parameters: m = 0.25, R = 520 J/(kg-K), p~= 103 kg/m 3, 

Pgh= 900 kg/m 3, Pi = 910 kg/m 3, P m =  2'103 kg/m3, P'~= 1.8 • 10 -SPa'see, P-w = 1.8 X 10 -3 Pa'sec, k~ = 0.58 

W/(m'K), kg = 3.4 x 10 --~ W/(m.K), )'gh = 2.11 W/(m'K), k~ = 2.33 W/(m.K), k,n = 2 W/(m.K), C~ = 2090 J/(kg'K), Cw 
= 4.2 x 103 J/(kg'K), C,n = 103 J/(kg.K), Cgg = 2.5 x 103 J/(kg.K), Cm. , = 2 x 103 J/(kg'K), q. = 1.66 x 105 J/kg, q* 
= 3.34 • 105 J/kg. 

Typical temperature and pressure distributions in the gas hydrate dissociation process producing a two-front structure 
are shown in Fig. 2. The numerical computations reveal some characteristics of the regime. First, there are three regions 

different in their phase compositions. Knowledge of the phase composition is of key importance for the development of 
physical methods used in practice for diagnosing the hydrate-containing bed conditions. It is therefore necessary to distinguish 
between the cases of hydrate decomposition resulting in formation of solid H20 and liquid phase. The dimensions of the 
ice-saturated zone are largely dependent on permeability as well as on pressures and temperatures at the fixed wall. At wall 
temperatures slightly different from the ice melting point the dimensionless boundary velocity "y* is essentially smaller than 
7., and ice occupies nearly the whole hydrate-free region. An increase in the permeability and a pressure decrease in the well 
enhances the hydrate decomposition, resulting in an increase of the velocity 7* of the front boundary. A decrease of the 
permeability or more intensive heating reduces the ice-occupied area. So, the permeability decrease to k = 10 -15 m 2 gives 7* 

= 0.57, 7* = 1.04. As k decreases further, the ice-containing region thickness tends to zero, which is equivalent to the 
junction of two boundaries and transition to a single-phase regime. 

The temperature distribution (Fig. 2) shows that in a two-front regime heat flows mainly from the region before the 
front even if the stationary wall temperature is low. The rear melting boundary "screens" the heating, and gas hydrate 

dissociation takes place only due to a pressure drop. It is natural that in the multidimensional problem, heat flux from the 
surrounding rocks should also be taken into consideration. 

The pressure distribution curve has a bend caused by the penetrability jump, and the position of the bend corresponds 
to the melting ice boundary. The H2Osaturation changes from S+ = S~ = 0.86 to S_ = 0.49. In this case the ice interlayer 
formed there results in a 3.5-fold decrease of the permeability and reduces the amount of water carried out from the well 
during gas extraction. 

It should be noted that the recent generalizations of the mathematical models for gas hydrate dissociation in natural 

beds were performed because of both the presence of internal thermodynamic inconsistencies and the necessity to consider 

different factors affecting the physical process [6, 7]. It was demonstrated in [6] that if the gas hydrate in a bed exists 
together with gas, then for permeability above 10 -16 m 2 the front dissociation model results in gas hydrate overheating. A 
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consistent description is achieved by introduction of an extended phase transition region in which gas, water, and hydrate 
co-exist at thermodynamic equilibrium. In [7] the equilibrium is chosen as the initial existence of the system. In that case the 
front dissociation regime does not exist at all but dissociation occurs over the whole region. This study is an example 
illustrating how the inconsistency (water subcooling in the vicinity of the dissociation front) that occurs in a certain parameter 
region can be eliminated by introducing a movable phase transition boundary. 

NOTATION 

T, temperature; a, thermal diffusivity; m, porosity; k, thermal conductivity; p, density; C, heat capacity; S, water 
saturation; v, filtration velocity; k, permeability; f, relative phase permeability; P, pressure;/x, viscosity; e, internal energy 
density; h, enthalpy density; R, gas constant; q, phase transition heat; V and X(0, velocity and the law of motion of phase 
transition surfaces; ~, similarity variable; /3, similarity velocity; "y =/3/(2x/-a]). Subscripts: gh refers to gas hydrate; g, gas; 
w, water; i, ice; n, normal; +,  - ,  the right- and left-hand values at the boundary;.,  the value at the dissociation surface; *, 
the value at the melting surface. 
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